www.ec.gc.ca

A proposed approach for the assimilation of cloudy infrared radiances: impact study based on AIRS simulations

Environment Canada, Dorval, Qc

Louis Garand and Sylvain Heilliette

AIRS Science Meeting Pasadena, CA, March 27-30, 2007

AIRS assimilation at EC

- Current status: 87 channels to be assimilated operationally in fall 2007. RTTOV-8 RTM. Thinning: 250 km. About 90,000 radiances per 6h. Dynamic bias correction. Model top 10 hPa, 58 levels.
- ~125 channels planned for fall 2008 with model top at 0.1 hPa, 80 levels.
- Active research on cloudy radiance assimilation

GZ anomaly correlations **AIRS-NOAIRS**

SH, 35 days, winter 2005-2006, 3D-FGAT. AMSU-A from AQUA assimilated In both cycles.

Cloud affected radiances: a severe limitation

Clear skies: all 100 channels used at night

Less in daytime

Low clouds: max of 45 channels used

Cloud top above 400 hPa: no AIRS channels are assimilated in our system due to broad response functions

Example based on real data with 100 channels considered

Simplified approach to cloudy radiance modeling and assimilation

• Approach chosen: cloudy radiance computed assuming a single-layer cloud defined by an effective height P_c and emissivity $N\epsilon(v)$:

$$I_{cld}(v) = N\varepsilon(v)I \quad (v) + (1 - N\varepsilon(v)) \quad (v)$$

• Not oversimplified however: cloud emissivity to depend on wavelength and phase. Mixed phase considered. RTM and TL/AD modified accordingly.

Cloud emissivity model

$$N \dot{a}(v) = 1 - \exp\left[-k_{cld}(i)\delta\right]$$

 δ : effective cloud water path (= $\sec\theta$ ΔP g⁻¹ CWC) k_{cld} cloud effective absorption coefficient accounting approximately for scattering following Chou et al. 1999 :

$$k_{cld}(i) = k_{ext}(i) \left[\left(1 - \dot{u}(i) \right) + b(i)\dot{u}(i) \right]$$

With ω the single scattering albedo, k_{ext} the extinction coefficient and b the backscattered fraction :

$$b = \frac{1}{2} \int_0^1 d\mu \int_{-1}^0 \overline{P}(\mu, \mu') d\mu'.$$

Cloud emissivity model: mixed phase

- •Liquid cloud optical properties from Lindner and Li (2000) parameterization as a function of the effective radius r_e (for k_{ext} , ω , g).
- •Ice cloud optical properties from Baran et al. (2004, 2002 and 2005 private communication) for hexagonal column ice crystals as a function of the effective diameter D_e.

Optical properties are combined given the liquid fraction f_w from Rockel et al. (1991)

$$f_w = \begin{cases} 0.0059 + 0.9941 \exp\left[-0.003102(T_c - 273.16)^2\right]; & T_c < 273.16 \\ 1.0; & T_c > 273.16 \end{cases}$$

$$k_{ext} = f_w k_{ext}^w + (1 - f_w) k_{ext}^i \qquad \qquad \hat{u} = \frac{f_w k_{ext}^w \hat{u}^w + (1 - f_w) k_{ext}^i \hat{u}^i}{f_w k_{ext}^w + (1 - f_w) k_{ext}^i}$$

$$b = F(g) \approx \frac{1 - g}{2} \quad \text{with} \quad g = \frac{f_w k_{ext}^w \dot{u}^w g^w + (1 - f_w) k_{ext}^i \dot{u}^i g^i}{f_w k_{ext}^w \dot{u}^w + (1 - f_w) k_{ext}^i \dot{u}^i}$$

All parameterizations easily differenciable for AD/TL/K RTM

Cloud emissivity model: summary

- To summarize a full cloudy radiance spectrum can be simulated using only 4 cloud parameters, independent of wavelength:
 - The cloud top pressure P_c (gives also the cloud temperature T_c)
 - The effective cloud water path δ
 - The cloud effective radius $\mathbf{r}_{\mathbf{e}}$ (liquid phase)
 - The cloud effective diameter $\mathbf{D}_{\mathbf{e}}$ (ice phase)
- Dependence of emissivity and waveleght, phase via modeling

4/2/07

Page 8

Examples of cloud emissivity spectra

Liquid Water cloud: 15 μ emissivity set to 0.7 or 0.3 (δ fixed)

Note: AIRS gap 1614-2181 cm⁻¹

4/2/07 Page 9

Environment Environnement Canada Canada

Examples of cloud emissivity spectra

Ice Water cloud 15 μ emissivity set to 0.7 or 0.3 (δ fixed)

4/2/07 Page 10

Note: AIRS gap

1614-2181 cm-1

Principle of the Monte-Carlo experiments

4/2/07

Page 11

Canada

Monte-Carlo experiments: definitions

- The 1D-var experiments were performed with various background constraints or conditions:
 - CLR: using only channels insensitive to cloud
 - FREE: using all channels with free cloud parameters
 - CTRLD: using all channels with constrained cloud parameters
 - FXD: using all channels with fixed cloud parameters
 - BT3SIG: one of the above using only channels for which the background departure (O-P) is lower than 3 times the standard deviation of <O-P> for the 1000 cases
- Nine cloud configurations: Pc = 850, 500, 500 hPa and 15 micron emissivity = 0.3, 0.7, 1.0.

4/2/07

Page 12

Monte-Carlo experiments: outputs

- Statistics calculated for 1000 realizations for each of the 9 cloud configurations :
 - Bias : $\mathbf{b} = \langle \mathbf{x}_t \mathbf{x}_a \rangle$
 - Analyzed covariance $\mathbf{A}_{ij} = \langle (\mathbf{x}_{ti} \mathbf{x}_{ai} \mathbf{b}_i)(\mathbf{x}_{tj} \mathbf{x}_{aj} \mathbf{b}_j) \rangle$
 - Variance reduction $V_r = diag(I AB^{-1})$
 - Degrees of freedom for signal $DFS = Trace(\mathbf{I} \mathbf{AB}^{-1})$

4/2/07

Variance Reduction for temperature profiles

Reduction slightly less for BT3SIG due to less channels

4/2/07

Variance reduction for water vapor profiles

4/2/07

Environment Env Canada Car

Temperature degrees of freedom for signal (DFS) for the CLR, FREE and FREE BT3SIG experiments.

	P _c =850 hPa	P _c =700 hPa	P _c =500 hPa
$\epsilon(15\mu m)=1.0$	0.904 / 1.871 / 1.519	0.847/1.682/1.439	0.232/1.162/1.106
$\epsilon(15\mu m)=0.7$	0.949 / 1.875 / 1.692	0.762 / 1.693 / 1.493	0.119/1.389/1.193
$\varepsilon(15\mu m)=0.3$	1.151 / 1.810 / 1.705	0.938 / 1.738 / 1.590	0.185 / 1.496 / 1.380

Temperature profile DFS for clear sky case using all (100) channels: 2.299

Logarithm of water vapour mixing ratio degrees of freedom for signal (DFS) for the CLR, FREE and FREE BT3SIG experiments.

	P _c =850 hPa	P _c =700 hPa	P _c =500 hPa
$\varepsilon(15\mu m)=1.0$	1.378 / 3.190 / 2.425	1.158 / 2.643 / 2.080	0.209 / 1.733 / 1.414
$\varepsilon(15\mu m)=0.7$	1.433 / 3.081 / 2.482	1.060/2.882/2.349	0.146/2.767/2.225
$\varepsilon(15\mu m)=0.3$	1.778 / 2.986 / 2.475	1.339/3.012/2.483	0.187/3.075/2.522

Log(q) profile DFS for clear sky case using all (100) channels: 3.427

Detailed analysis of the (700; 0.7) configuration

Standard deviation

Std (Temp) reduced by 0.1 K and std ln(q) by 0.1 Ln(q) biases reduced in BT3SIG 18

Note: tropical error background stats

Environment Canada Environnement Canada

Cloud parameter retrieval statistics

P_c STDDEV (hPa) before/after assimilation

	Pc=850 hPa	Pc=700 hPa	Pc=500 hPa
e(15mm)=1.0	55.43 / 13.41	23.54 / 9.21	13.36 / 5.77
e(15mm)=0.7	63.96 / 31.55	50.63 / 18.38	30.38 / 10.82
e(15mm)=0.3	79.94 / 108.85	79.46 / 63.45	71.23 / 36.07

15 μ m cloud emissivity STDDEV before/after assimilation

	Pc=850 hPa	Pc=700 hPa	Pc=500 hPa
e(15mm)=1.0	0.17 / 0.02	0.06 / 0.0001	0.032 / 0.00009
e(15mm)=0.7	0.19 / 0.12	0.13 / 0.05	0.070 / 0.024
e(15mm)=0.3	0.34 / 0.26	0.21 / 0.11	0.12 / 0.04

Large improvement from assimilation over CO₂ slicing guess Problems with low clouds with low emissivity Target is 35 hPa for P_c and 0.035 for emissivity

Sensitivity to size parameter (1)

- Climatological values are used as first guess for r_e, D_e. For δ and P_c a first guess is obtained from CO₂ slicing.
- The size parameter is allow to vary in the assimilation. What is the impact of an error on the initial value?
- Is there some skill in retrieving the size parameter?

Sensitivity to particle size (2)

Assumed particle sizes:

- •8 µm for r_e (instead of 13)
- •50 µm for D_e (instead of 25)

Impact on biases

4/2/07

Fixing the size parameter Results in significant biases

Page 21

Sensitivity to particle size (3)

Variance reduction (Temp: top; In(q): bottom)

Assumed particle sizes:

- •8 µm for r_e (instead of 13)
- •50 μm for D_e (instead of 25)

Impact on error variance reduction

Fixing the size parameters has a minor impact on variance reduction Page 22

free size parameters -----fixed size parameters
Linear theory

Environment Environnement Canada Canada

Retrieving skill associated with D_e, R_e?

- From 1000 simulations:
- R_e : guess: 13 μ m, true: 8 μ m; P_c =850 Hpa, emi (15 μ m = 0.7). The retrieved mean R_e was 9.3 μ m (bias of 1.3 μ m) and STD = 3.0 μ m.
- D_e : guess: 25 μ m, true 50 μ m; P_c = 500 hPa emi (15 μ m = 0.7. The retrieved mean D_e was 37.5 μ m (bias of 12.5 μ m) and STD = 8.1 μ m.

Capability to retrieve effective particle size has some value, with rms errors in the 30-50 % range

Conclusions (1)

- Assimilation of cloudy radiances from AIRS has the potential to significantly improve NWP analyses of temperature and humidity
- Highest impact expected for mid-level scattered clouds situations in the layer just above the cloud. Some skill also noted below cloud level
- Better to let cloud parameters only weakly constrained to avoid biases in sounding retrievals
- Cloud parameters most difficult to infer for low clouds and low emissivity
- Cloudy assimilation expected to be most successful for cases where std (Pc) < 35 hPa and std (emi) < 0.035. Pre-determining such cases is a challenge.
- There is some skill in retrieving the cloud effective particle size: errors of the order of 30-50%.
- Using real data will no doubt create additional sources of uncertainty such as bias correction for cloudy radiances and the need to avoid problematic cases such as multi-layered fields-of-view.

Conclusions (2)

- The idea of predefining the cloud parameters in (e.g. via 1D-var) and to keep these fixed in 3D/4D assimilation is likely to lead to biases. It is preferable to use all available data together.
- Therefore, the operational assimilation code has been modified to include the *local* estimate of the 4 cloud parameters in the 4D-var minimization.
- First 3D/4D assimilation results with real data should be available soon.

